Package: xrf 0.2.2

xrf: eXtreme RuleFit

An implementation of the RuleFit algorithm as described in Friedman & Popescu (2008) <doi:10.1214/07-AOAS148>. eXtreme Gradient Boosting ('XGBoost') is used to build rules, and 'glmnet' is used to fit a sparse linear model on the raw and rule features. The result is a model that learns similarly to a tree ensemble, while often offering improved interpretability and achieving improved scoring runtime in live applications. Several algorithms for reducing rule complexity are provided, most notably hyperrectangle de-overlapping. All algorithms scale to several million rows and support sparse representations to handle tens of thousands of dimensions.

Authors:Karl Holub [aut, cre]

xrf_0.2.2.tar.gz
xrf_0.2.2.zip(r-4.5)xrf_0.2.2.zip(r-4.4)xrf_0.2.2.zip(r-4.3)
xrf_0.2.2.tgz(r-4.4-any)xrf_0.2.2.tgz(r-4.3-any)
xrf_0.2.2.tar.gz(r-4.5-noble)xrf_0.2.2.tar.gz(r-4.4-noble)
xrf_0.2.2.tgz(r-4.4-emscripten)xrf_0.2.2.tgz(r-4.3-emscripten)
xrf.pdf |xrf.html
xrf/json (API)

# Install 'xrf' in R:
install.packages('xrf', repos = c('https://holub008.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/holub008/xrf/issues

On CRAN:

5.01 score 43 stars 16 scripts 879 downloads 1 exports 38 dependencies

Last updated 2 years agofrom:65aa6bd4c7. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winOKNov 22 2024
R-4.5-linuxOKNov 22 2024
R-4.4-winOKNov 22 2024
R-4.4-macOKNov 22 2024
R-4.3-winOKNov 22 2024
R-4.3-macOKNov 22 2024

Exports:xrf

Dependencies:clicodetoolscpp11data.tabledplyrfansiforeachfuzzyjoingenericsgeosphereglmnetglueiteratorsjsonlitelatticelifecyclemagrittrMatrixpillarpkgconfigpurrrR6RcppRcppEigenrlangshapespstringdiststringistringrsurvivaltibbletidyrtidyselectutf8vctrswithrxgboost